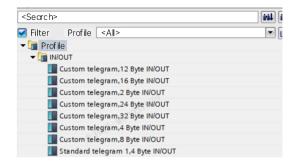
MV800 PROFINET Communication Option User Manual

Code: *******

Version: V00

1 Product Introduction

1.1 Naming rule


1.2 Function description

MV810-PNET03 is an option for MV800 series drives, whose functions are detailed below:

1.2.1 Function features

- (1) Supports control data exchange through PZD
- (2) Supports access of drive parameters through PKW
- (3) Supports 100 Mbps full duplex
- (4) Supports linear network topology and star network topology
- (5) Supports configurable PZD data length

In the TIA Portal software, when clicking on the slave device, the following dialog box will pop up at the right hardware catalog. You can select the desired PZD length for configuration as needed, as shown in the figure below:

1.2.2 Basic specifications

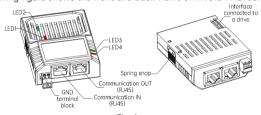
	Interface	Two RJ45 ports	
PROFINET	Transmission mode	High-speed bus	
connector	Transmission media	CAT6 Ethernet cable	
	Galvanic isolation	500 V DC	
	Information type	Cyclic data exchange	
	Module name	MV810-PNET03	
Communication	GSDML file	GSDML-V2.42-MEGMEET-MV800-PN0	
Communication	GSDIVIL THE	3-20250102.xml	
	Bus transmission	100 Mbps	
	speed	loo loops	
	Power voltage	3.3 V DC (provided by the drive)	
Electrical	Insulation voltage	500 V DC	
specifications	Power consumption	1 W	
	Weight	25 g	
	Nicological	ESD (IEC 61800-5-1, IEC 61000-4-2)	
Environment		EFT (IEC 61800-5-1, IEC 61000-4-4)	
Livilorinent	Noise immunity	Surge Test	
		(IEC 61800-5-1, IEC 61000-4-5)	

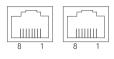
	Conducted Susceptibility Test (IEC 61800-5-1, IEC 61000-4-6)
Operating/Storage environment	Operating: -10 to 50°C (temperature), 95% (humidity) Storage: -25 to 70°C (temperature), 95% (humidity)
Vibration/Shock resistance	International standards IEC 61131-2, IEC 68-2-6 (TEST FC)/ IEC 61131-2 & IEC 68-2-27 (TEST Ea)

1.3 Terminal description

1.3.1 Layout

The following figure shows the front and back views of MV810-PNET03.




Fig. 1

The option has GND, two RJ45 ports and the interface connected to a drive.

1.3.2 Pin definitions

The pin definitions of MV810-PNET03 are list below:

Pin	Name	Description
1	TX+	Transmit Data+
2	TX-	Transmit Data-
3	RX+	Receive Data+
4	N/C	NOT CONNECTED
5	N/C	NOT CONNECTED
6	RX-	Receive Data-
7	N/C	NOT CONNECTED
8	N/C	NOT CONNECTED

1.3.3 LED indicator description and fault diagnosis

MV810-PN03 has five LED indicators (see Fig. 1): LEDs on the PCBA of expansion box and LEDs on the communication ports. The LEDs on the PCBA of expansion box indicate function status and power supply, while the LEDs on the communication ports indicate whether the communication status of MV810-PN03 is normal.

LED description of expansion box PCBA:

LED4 (Red)	Description	Action
Off	Normal	No need for actions
Steady on	Communication timeout between the master station and the communication card	Check whether the PN option is properly connected to the drive

LED description of communication ports:

LED status	Description	Action
Yellow light	Normal connection with	No need for actions
flashing	data transmission	No fleed for actions
Green light	Normal connection	No need for actions
steady on	Normal connection	no need for actions
Yellow light	Normal connection	Check if there is communication
steady on	without data transmission	between the master station and
Steddy on	Without data transmission	the slave station
Green light off	Connection failed	Check the Ethernet cable
Green light on	Connection railed	connection

2 Installation

2.1 Accessory list

Accessory	Specifications	Quantity
MV810-PNET03	75*60*24 mm	1
User Manual	A4*1	1

2.2 Installation method

The installation position, interface and steps of MV810-PNET03 are described below:

2.2.1 Installation position

The installation position for the MV810 PN option is shown in Fig. 2 (taking enclosure B as the example, similar for other enclosures).

Fig. 2

2.2.2 Installation interface

The electrical interface of the MV810 PN option is connected to the drive as shown in Fig. 3.

Fig. 3

2.2.3 Installation steps

Installation method: front side mounting of PN

- (1) When the drive is powered off, press the granulated part on the middle-upper of the lower cover, slide it down firmly to take down the cover, as shown in Fig. $4\,\alpha$.
- (2) Use a straight screwdriver to pry open the dustproof cap or rubber plug, as shown in Fig. 4 b.
- (3) Install the PN option: hold the expansion box (a bus card inside) upwards (indicators up), then align the expansion box with the electrical bus interface of the installation position, and press down horizontally to buckle the spring

snap of the expansion box into the groove at the lower part of the drive, as shown in Fig. 4 c and d.

(4) The bus card is successfully installed, as shown in Fig. 4 e.

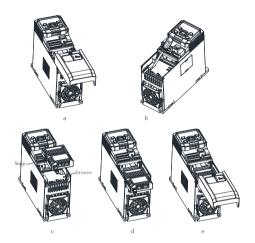


Fig. 4 PN card installation steps

(5) Grounding: MV810-PNET03 must be grounded during wiring as shown in Fig. 5.
You need to prepare and crimp the cable by yourself.

Fig. 5 Grounding terminal connection

Grounding method:

connect the B end of the grounding cable to the option's grounding terminal block, and you can check the grounding cable diameter and torque by referring to Table 1-1; then connect the A end of the grounding cable to the grounding rack PE (the mark for grounding, circled in Fig. 6) of the drive (taking enclosure B as an

example, similar for others), and you can check the grounding screw specifications and torque by referring to Table 1-2.

Fig. 6

Table 1-1 Recommended diameter and torque for the grounding cable

Option	Screw	Diameter	Stripped part	Torque (±10%)
MV810-PNET03	M2.0	0.5 to 1.5 mm²/ (28 to 16 AWG)	5 to 6 mm	2 kg-cm/(1.7 lb.in)/ (0.2 N·m)

Table 1-2 Recommended grounding screw and torque

Enclosure	Screw	Torque (±10%)
В	M3	7 kg-cm/(6.08 lb-in)/(0.68 N·m)
С	M4	15 kg cm/(17 0 lb in)//1 47 N m)
D	1014	15 kg-cm/(13.0 lb-in)/(1.47 N·m)

3 PN Customized Protocol

The customized protocol for MV810-PNET03 is described as below.

Parameter	Byte	Description	
	Byte0	The local device is the PN slave station (PN card installed) and also the 485 master station, which transmits	
PKW0	Byte1	messages of the PN master station to other 485 slave stations. Byte0: Target station number (485 slave station)	

Parameter	Byte	Description		
		Byte1: Source station number (the local station, with PN		
		option, set by P15.02)		
		Slave station response:		
		Byte0: Target station number (485 master station)		
		Byte1: Source station number (the local station)		
		Read/Write of the function code parameter (one for each		
		time)		
	D. +- 0	0x03: Read one		
	Byte2	0x06: Write one, saved to EEPROM		
		0x07: Write one, not saved to EEPROM		
		Byte2: High byte of the control word		
PKW1		Byte3: Low byte of the control word		
		Slave station response:		
		Byte2: 0		
	Byte3	Byte3:		
		0x03, response to read		
		0x06 and 0x07, response to write		
		0x08+command code, error response		
		Function code address to be read and written		
	Byte4	Byte4: High byte of the address		
PKW2		Byte5: Low byte of the address		
FINVZ		Slave station response:		
	Byte5	Byte4: High byte of the address		
		Byte5: Low byte of the address		
		For write operation, PKW3 is the specific written value;		
	Byte6	For read operation, PKW3 is the number of read (fixed to		
PKW3		1)		
FINAN		Byte6: High byte of the parameter value		
	Byte7	Byte7: Low byte of the parameter value		
		Slave station response:		

Parameter	Byte	De	escription		
		Byte6: High byte of function code value (response to			
		read), 0 (response to write), high byte of error code (error			
		response)			
		Byte7: Low byte of function code value (response to			
		read), 0 (response to writ	e), low byte o	f error code (error	
		response)			
		Control word sent by the	master statio	n:	
		Bit0: Forward running	0: Disabled	1: Enabled	
		Bit1: Reverse running	0: Disabled	1: Enabled	
		Bit2: Forward jogging	0: Disabled	1: Enabled	
		Bit3: Reverse jogging	0: Disabled	1: Enabled	
	Byte8	Bit4: Decelerate to stop	0: Disabled	1: Enabled	
		Bit5: Coast to stop	0: Disabled	1: Enabled	
		Bit6: Fault reset	0: Disabled	1: Enabled	
		Bit7: Emergency stop	0: Disabled	1: Enabled	
		Byte8: High byte of the control word			
		Byte9: Low byte of the control word			
PZD1		Status word responded by the slave station:			
1201		Bit0: Forward running	0: Invalid	1: Valid	
		Bit1: Reverse running	0: Invalid	1: Valid	
		Bit2: Stop	0: Invalid	1: Valid	
		Bit3: Fault	0: Invalid	1: Valid	
		Bit4: Power-down			
	Byte9	Bit5: Ready state	0: Invalid	1: Valid	
		Bit6: Motor number	0: Motor 1	1: Motor 2	
		Bit7: Motor type			
		0: Asynchronous 1: Syn			
		Bit8: Overload pre-warnir		1: Valid	
		Bit9-Bit10: Command channel			
		0: Keypad 1: Terminal	2: Communi	cation	

Parameter	Byte	Description		
		Byte8: High byte of the status word		
		Byte9: Lov	v byte of th	e status word
PZD2	Byte10	The elever	n words fror	m PZD2 to PZD12 are used to read
PZDZ	Byte11	and write	internal par	ameters of the drive. P43.02 to
D7D7	Byte12	P43.12 are	used to se	t parameters to be written, and
PZD3	Byte13	P43.13 to I	P43.23 are ι	used to set parameters to be read.
D7D4	Byte14	P43.02	PZD2	0: Disabled
PZD4	Byte15	1 45.02	receive	1: Frequency reference (0.00 to
PZD5	Byte16	P43.03	PZD3	P02.10)
PZD5	Byte17	1 10.00	receive	2: Drive torque upper limit
D7D/	Byte18	P43 04	PZD4	reference (0.0 to 300% of the
PZD6	Byte19	1 10.01	receive	motor rated current)
	Byte20	P43.05	PZD5	3: Braking torque upper limit
PZD7	Byte21	1 10.00	receive	reference (0.0 to 300% of the
	Byte22	P43.06	PZD6	motor rated current)
PZD8	Byte23	1	receive	4: Torque reference (-300.0 to
	Byte24	P43.07	PZD7	300.0% of the motor rated
PZD9	Byte25	1	receive	current)
	Byte26	P43.08	PZD8	5: FWD frequency upper limit
PZD10	Byte27		receive	reference (0.00 to P02.10)
	Byte28	P43.09	PZD9	6: REV frequency upper limit
PZD11	Byte29		receive	reference (0.0 to P02.10)

Parameter	Byte			Description
	Byte30	P43.10	PZD10	7: Voltage reference
			receive	(VF separation) (0 to 1000)
		P43.11	PZD11	8: Virtual input terminal
			receive	command (0 to 0xFF
				corresponding to DI8 to DI1)
	Byte31	P43.12		9: Output terminal bus command
				(set the output terminal function
				to No.39, 0 to 0xF corresponding
				to RO, DO3, DO2 and DO1)
				10: AO1 output reference (0 to
			PZD12	100.0%)
			receive	11: HDO1 output reference (0 to
				100.0%)
PZD12				12: HDO2 output reference (0 to
				100.0%)
				13: PID reference (0.0 to 100.0%)
				14: PID feedback (0.0 to 100.0%)
				15 to 30: Reserved
		P43.13	PZD2	0: Disabled
			feedback	1: Frequency reference (0.01 Hz)
		P43.14	PZD3	2: Ramp reference (0.01 Hz)
			feedback	3: Output frequency (0.01 Hz)
		P43.15	PZD4	4: Output voltage (1 V)
			feedback	5: Output current (0.1 A)
		P43.16	PZD5	6: Bus voltage (0.1 V)
			feedback	7: Motor power (0.1%)
		P43.17	PZD6	8: Output torque (0.1%)
			feedback	9: Exciting current (0.1 A)
		P43.18	PZD7	10: Torque current (0.1 A)
		1 45.10	1 201	11: Status word (0 to 0xFFFF)

Parameter	Byte	Description				
			feedback	12: Fault code (0 to 46)		
				13: DI1 to DI4 status (0 to 0xFFFF)		
		P43.19	PZD8	14: DI5 to DI8 status		
			feedback	15: Digital output status		
		P43.20	PZD9	(0 to 0xF)		
		P45.20	feedback	16: Al1 input voltage		
		P43.21	PZD10	(0 to 10.00 V)		
			feedback	17: Al2 input voltage		
		P43.22	PZD11	(-10.00 V to 10.00 V)		
			feedback	18: HDI input frequency		
			PZD12 feedback	(0 to 50.000 kHz)		
				19: AO output value (0 to 100.0%)		
				20: HDO1 output value		
				(0 to 50.000 kHz)		
				21: HDO2 output value		
				(0 to 50.000 kHz)		
				22: PID reference value		
		P43.23		(-100.0% to 100.0%)		
				23: PID feedback value		
				(-100.0% to 100.0%)		
				24: PID deviation		
				(-100.0% to 100.0%)		
				25: PID output		
				(-100.0% to 100.0%)		
				26 to 30: Reserved		
		Byte10: High byte of the parameter				
		Byte11: Low byte of the parameter				
		(similar for other Bytes)				

4 Example of PN parameter settings

The PN customized messages can be used in two modes:

Mode 1: Common PN communication

This mode is the traditional communication between the controller and the PN device, with each drive installed with a PN option. It is not necessary to write the first two bytes (address) of the customized protocol. The function codes are set as below:

P02.02=2 (communication control)

P02.03=3 (PN communication)

P02.05=8 (frequency reference channel set to PN)

Ones place of P15.00=0 (non PN to 485)

P40.01=3.0 s (detection for expansion card identification timeout, can be modified to other values)

P43.01=1 (0 is the standard message 1, and 1 is the customized message)

P43.02 to P43.12 are used to set the parameters for the controller to write

P43.13 to P43.23 are used to set the parameters for the controller to read

Mode 2: PN to 485 (one PN option can control up to 5 drives)

In this mode, only one drive is installed with the PN option which transmits the controller's messages to other drives through 485, with the frame header and tail deleted, the length being 33 bytes. Only the customized message is allowed. The controller uses the first two bytes (485 station number) to visit the corresponding drive. The function code setting can be divided into two types:

(1) 485 master station

P02.02=2 (communication control)

P02.03=3 (PN communication)

P02.05=8 (frequency reference channel set to PN)

Ones place of P15.00=1 (PN to 485)

Set the local 485 station number through P15.02

P40.00=1 (PN to 485 function of the master station enabled)

P40.01=3.0 s (detection for expansion card identification timeout, can be modified to other values)

P43.01=1 (only the customized message allowed)

P43.02 to P43.12 are used to set the parameters for the controller to write

P43.13 to P43.23 are used to set the parameters for the controller to read

(2) 485 slave station

P02.02=2 (communication control)

P02.03=3 (PN communication)

P02.05=8 (frequency reference channel set to PN)

Ones place of P15.00=1 (PN to 485)

Set the local 485 station number through P15.02

P40.00=0 (PN to 485 function of the slave station enabled)

P40.01=3.0 s (detection for expansion card identification timeout, can be modified to other values)

P43.01=1 (only the customized message allowed)

P43.02 to P43.12 are used to set the parameters for the controller to write

P43.13 to P43.23 are used to set the parameters for the controller to read

Note: Currently, the baud rate of PN-485 is set to 200 k, and it takes less than 5 ms for the master to receive response from the slave after sending the message.

ms for the master to receive response from the slave after sending the message. The master forwards a PN message every 50 ms (this period must be greater than the total time of one sending and response), while the controller forwards at a higher frequency. Therefore, there may be kind of delay for the controller to receive the corresponding data and response status. The mode can only be used in scenarios not requiring high real-time performance.

Shenzhen Megmeet Electrical Co., Ltd.

Address: 5th Floor, Block B, Unisplendor Information Harbor, Langshan Road,

Nanshan District, Shenzhen, 518057, China

Tel: +86-755-86600500

Zip code: 518057

Website: https://www.megmeet.com/

Service email: driveservice@megmeet.com

All rights reserved. The contents in this document are subject to change without

notice.

MEGMEET Checker: Warranty bill of communication option MEGMEET Manufacturina date: Customer company: Detailed address: SHENZHEN Tel: Contact: MEGMEET The product has Option model: ELECTRICAL CO... been tested in line Option No: with design LTD. Purchase date: standards and Certificate approved for Service unit: leaving the factory. Tel: Contact: Maintenance date: